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Three-dimensional molecular dynamics simulations of void coalescence during
dynamic fracture of ductile metals

E. T. Seppälä,∗ J. Belak,† and R. E. Rudd‡
Lawrence Livermore National Laboratory, Condensed Matter Physics Division, L-045, Livermore, CA 94551, USA

(Dated: September 2, 2004)

Void coalescence and interaction in dynamic fracture of ductile metals have been investigated using
three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper.
The correlated growth of two voids during the coalescence process leading to fracture is investigated,
both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified
through the rate of reduction of the distance between the voids, through the correlated directional
growth of the voids, and through correlated shape evolution of the voids. The critical inter-void lig-
ament distance marking the onset of coalescence is shown to be approximately one void radius based
on the quantification measurements used, independent of the initial separation distance between the
voids and the strain-rate of the expansion of the system. The interaction of the voids is not reflected
in the volumetric asymptotic growth rate of the voids, as demonstrated here. Finally, the practice
of using a single void and periodic boundary conditions to study coalescence is examined critically
and shown to produce results markedly different than the coalescence of a pair of isolated voids.

PACS numbers: 61.72.Qq, 62.20.Mk, 62.20.Fe, 61.72.Lk

I. INTRODUCTION

The fracture of ductile metals at high strain rates has
been understood at the microscopic level as a process of
nucleation, growth and coalescence of voids.1,2 Initially
voids nucleate at the weak points in the material such
as inclusions and/or grain boundary junctions. Once nu-
cleated, the voids grow under the tensile stress, driven
by the reduction in elastic energy. Eventually, the voids
grow sufficiently large that they interact with each other,
in some cases link through localized shear, coalesce into
larger voids, and finally form the fracture surface.3,4 Con-
siderable experimental and theoretical work has gone into
the development of our understanding of fracture. The
fracture process has been modeled at various levels, but
most of the work involving the simulation of the activity
of individual voids has concentrated on the void growth
and its relationship to the plastic deformation of the sur-
rounding material, including effects such as the localiza-
tion of this shear deformation. Relatively little work has
gone into the explicit modeling of void coalescence, and
both the understanding of the physics of this process and
the knowledge of how it should be implemented robustly
in continuum fracture codes remain open issues. The
point at which voids begin to coalesce during dynamic
fracture is of considerable interest because complete frac-
ture of the material typically ensues rapidly thereafter.
As new experimental techniques have constrained the
void growth models ever more stringently,5 a real need
for a well developed theory of coalescence has arisen.

Computationally void growth has been studied ex-
tensively at the continuum level,6–9 also in dynamic,
high strain-rate, conditions.10,11 Recently we have stud-
ied void growth at the atomistic level under high strain-
rate expansion while being motivated by spallation ex-
periments.12–16 The atomistic studies demonstrate that
voids grow by emitting dislocations, which carry away

the material, platelets of atoms, from the void and are
responsible for the plastic deformations needed to accom-
modate significant void growth. There are also many
recent studies of fracture in ductile metals with several
holes or voids.17–21 While these studies model the void
growth explicitly with fairly sophisticated models of plas-
ticity in many cases, they typically simplify the coales-
cence process to instantaneous unification of the voids
when some threshold is reached, such as once the voids
grow to within one diameter of each other. There are
also studies which investigate the competition between
void by void growth versus multiple void interaction in
crack propagation.22 The several earlier continuum stud-
ies23–25 and the one atomistic study known to us26 of the
coalescence process have been typically conducted in ef-
fectively two dimensional and highly symmetric systems.

This Article covers in detail a study of the onset of
void coalescence. The first results of this study have been
presented in a Letter, submitted for publication.27 Here
we provide a more complete presentation of the results
of our study of void coalescence. In addition to a more
detailed description of the results presented in the Letter,
we describe different measures of void interactions such as
shape changes induced by a neighboring void, additional
analysis of the behavior of the system including stress-
strain curves and void volume curves, and a new analysis
of how the coalescence of isolated pairs of voids differs
from that of voids in highly symmetric periodic arrays.

In particular the goal of this Article is to quantify the
point at which coalescence begins, as measured by a crit-
ical inter-void ligament distance (ILD), and examine the
mechanisms involved in the transition from independent
void growth to coalescence. There are several ways in
which two voids can interact. In the case of pure im-
pingement, the voids only interact when they grow to
the point that they intersect and join into a single void.
In reality, the voids interact before they intersect. Their
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range of interaction is extended due to their elastic and
plastic fields. Each void generates an elastic strain field
of the form generally associated with centers of dilata-
tion.28 The shear stress decreases with the distance from
the void like r−3. For voids sufficiently close each void’s
growth rate is altered by the stress field of the proxi-
mal void. The modification of the elastic field can af-
fect the initiation of plasticity, as well as the subsequent
development of the plastic zone around the voids. The
voids may interact through their plastic fields, too, in
which case the fields may give rise to an increased hard-
ening rate in a localized region or to thermal softening
and shear localization. An argument due to Brown and
Embury for a transition to shear deformation based on
simple geometrical considerations suggests that the crit-
ical inter-void ligament distance, ILDc, should be equal
to one diameter of a void;29 that is, when the surfaces of
a pair of voids are separated by one void diameter, they
transition from independent void growth to coalescence.
It is at this point, they argue, that the dominant void
process switches from the radial plastic flow around iso-
lated growing voids to a shear deformation allowing the
rapid coalescence of the pair of voids. However, more
recent two-dimensional studies suggest that for distances
between voids as large as six diameters the void growth
rate is enhanced.30

The use of atomistic techniques permits the analysis
of the contributions of these competing mechanisms to
the onset of void coalescence, as we describe in this Ar-
ticle. We demonstrate the existence of, and compute,
the critical inter-void ligament distance ILDc by start-
ing with two voids well separated from each other and
detecting the point at which correlated growth begins,
marked both by the accelerated rate at which the two
void surfaces approach each other and by biased growth
causing the voids to start to extend toward each other.
This gives an indication of the onset of the coalescence
process, and it tests the argument by Brown and Em-
bury.29 We also test the setup by Horstemeyer et al.30
by varying the initial distances between the voids and
measuring the asymptotic growth rate of the voids. The
initial void-to-void distance below which the growth-rate
is enhanced should give another candidate for the critical
distance and measure it in a volumetric sense. It should
be noted, however, that the three-dimensional void coa-
lescence studied here with molecular dynamics, as indeed
any 3D coalescence of roughly spherical voids, does not
admit the two-dimensional shear mechanism proposed by
Brown and Embury in its simplest form, and therefore
these different analyses are not fully comparable. Also
Horstemeyer et al. used a more symmetric setup than
the simulations covered in this Article.

The Article is organized as follows. The simulation
method and the performed computations are introduced
in Section II. The basic mechanism, dislocation driven
void growth, is demonstrated and the key reference pa-
rameter, mean linear void size, is introduced in Sec-
tion III. The interaction between voids are studied in
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FIG. 1: A sketch of the simulation configuration. The sim-
ulation box includes 120 × 120 × 120 FCC cells with peri-
odic boundary conditions for a total of 6 912 000 atoms ini-
tially. From this two equal size voids are created by remov-
ing approximately 3620 atoms for each void. At the start
of the simulation the system is brought to equilibrium at
room temperature and ambient pressure, with the side length
of the cube being L = 43.3 nm. The initial void radius is
r0 = 0.05L = 2.17 nm. The thin arrow shows the inter-void
ligament distance, the shortest surface-to-surface distance be-
tween voids, which initial value is varied. A and B identify
the two voids. They have been positioned such that void A
is at the center of the box for convenience, but of course the
center has no special physical significance due to the peri-
odic boundary conditions. The bold arrows denote triaxial,
hydrostatic, expansion of the box. The strain-controlled ex-
pansion is applied with constant strain-rates of ε̇ = 108/sec
and 109/sec.

Section IV: Section IV A uses two different distance mea-
surements to study the interaction; Section IVB intro-
duces a shape parameter for the purpose. Finally the
volume effects of the void growth are studied in Sec-
tion V: two separate voids are studied in Section V A
and one void and the interaction with its periodic image
are studied in Section V B. The paper ends with conclu-
sions, Section VI.

II. METHOD AND SIMULATIONS

We have performed a series of large-scale classical
molecular dynamics (MD) simulations31 in single crys-
tal face-centered cubic (FCC) systems using an empirical
embedded-atom model (EAM) potential for copper.32,33
The three dimensional (3D) simulation box consists of
120 × 120 × 120 FCC cells with periodic boundary con-
ditions for a total of 6 912 000 atoms, in most cases.
In Section V B where results from smaller system size
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TABLE I: The initial position for void B relative to void
A and the center-to-center distances for various initial inter-
void (surface-to-surface) ligament distances ILD0 used in this
study.

ILD0 position of void B separation between the
relative to void A centers of voids A and B

0.50 [0.1334, 0.0622, 0.0290]L 0.150L = 6.510 nm
1.00 [0.1778, 0.0829, 0.0387]L 0.200L = 8.680 nm
1.20 [0.1956, 0.0912, 0.0426]L 0.220L = 9.548 nm
1.50 [0.2223, 0.1037, 0.0483]L 0.250L = 10.85 nm
1.81 [0.2500, 0.1166, 0.0544]L 0.281L = 12.20 nm
4.62 [0.5000, 0.2332, 0.1087]L 0.562L = 24.40 nm

simulations are presented, the details of the sizes are in-
troduced. For the nearly 7 million atom simulations the
MD code was parallelized using spatial domain decom-
position and run in a massively parallel computer using
from 64 to 256 processors.

In the simulations the system is initially equilibrated
using a thermostat34 at room temperature, T = 300 K,
and a constant volume L3 (with L = 43.3 nm) cho-
sen to give ambient pressure, P ' 0 MPa. Once the
system has reached equilibrium, atoms are removed to
create two spherical voids in the system with radius
r0 = 0.05L = 2.17 nm: one centered in the box and
the other located a distance ILD0+2r0 away in the di-
rection û = [0.8892054, 0.41464327, 0.19335135] from the
first void. We refer to these as void A and void B, re-
spectively, see Fig. 1. ILD0, the initial inter-void liga-
ment distance, is the closest surface-to-surface distance
between the voids35 and it is varied here, but the relative
orientation of the voids is kept fixed. For ILD0 we have
used the values: 1.00, 1.20, 1.50, 1.81, and in some cases
0.50 and 4.62. The unit for the ILD is the void diame-
ter, d = 2r. The positions for the center of the void B
and the distances between the voids are listed in Table I.
Initially, the voids are equal in size, with approximately
3620 atoms removed for each. This removal of atoms
can be interpreted as an instantaneous debonding of two
infinitely weakly bound inclusions.

Once the voids are formed, the thermostat is turned
off, and dilational strain is applied uniformly at a con-
stant strain-rate ε̇. The strain-controlled simulations12
are carried out using the scaled coordinate formula-
tion typically employed in the constant pressure method
due to Parrinello and Rahman.36 Use of scaled coordi-
nates prevents the spurious generation of elastic waves
at the box boundaries. In this method the positions of
the atoms are stored using rescaled coordinates between
[0, 1). When calculating the forces and new positions of
the atoms their coordinates are multiplied by a diagonal
scaling matrix H = {Lx, Ly, Lz}. This scaling matrix is
updated each time step, when the expansion is applied,
by multiplying the initial matrix H0 = {L,L,L} with
the sum of the unit matrix and the strain matrix E = tĖ ,
H(t) = H0(I + tĖ). Applied strain-rates of ε̇ = 108/sec

FIG. 2: (Gray-scale) A three dimensional snapshot of the two
voids with the prismatic dislocation loops forming from the
voids. Only those atoms belonging to the void surfaces or to
dislocation cores, stacking faults or other defects are shown
(and a small number of extraneous atoms due to thermal fluc-
tuations). The stacking fault ribbons are the broad plates be-
tween leading and trailing partial dislocations. The snapshot
is from the simulation with the initial inter-void ligament dis-
tance ILD0=1.81 diameters, and the strain-rate ε̇ = 109/sec.
The strain and the mean linear void size (see the text for its

definition) at the snapshot are ε = 2.93% and f̄1/3 = 0.111,
respectively.

and 109/sec have been used with perfectly triaxial, or
hydrostatic, expansion, Ė = {ε̇x, ε̇y, ε̇z} = {ε̇, ε̇, ε̇}. Thus
Lx(t) = Ly(t) = Lz(t) = L(t) = V 1/3, where V is the
volume of the box. A time step of 6.7 fs was used. More
details of the simulation method can be found in Ref. 16,
including analysis of growth of a single void of the same
initial radius r0 in non-triaxial expansion.

III. DISLOCATIONS AND VOID GROWTH

Let us start reviewing the simulation results by looking
at some figures to visualize growth of the voids. While
some void growth takes place through elastic stretching in
the initial phases of the box expansion, significant void
growth and void-void interaction take place only once
plastic deformation has begun. The important role of
plasticity leads us to consider in some detail how disloca-
tions are generated and the effect of dislocation dynamics
on void coalescence, which are the topics of this Section.

In Fig. 2 a three-dimensional snapshot of the voids is
shown from a simulation with the initial inter-void liga-
ment distance ILD0=1.81 diameters and the strain-rate
ε̇ = 109/sec. In the plot only the atoms at crystallo-
graphic defects such as void surfaces, dislocation cores,
and stacking faults either are shown. The decision of
which atoms to plot is based on a geometrical criterion,
a finite-temperature generalization of the centrosymme-
try deviation.15,37 The power of this method of select-
ing atoms based on the centrosymmetry deviation is that
the visualization can be done at finite temperature and
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FIG. 3: Dislocation activity at six instants of time shown on one particular slice through the system in order to expose the
plasticity near the void surfaces. These snapshots are from the simulation with ε̇ = 109/sec and again only those atoms in
dislocation cores, stacking faults, void surfaces or other defects are shown (see text for more details and Fig. 2 for a full three-
dimensional figure). The dashed loop in panel (c) is drawn around a slice of a prismatic dislocation loop. The plane shown
passes through the centers of both voids with normal [0.145, 0.145, -0.979]. The snapshots show the initial plasticity (a,b),
interacting plastic zones (c,d) and the final coalescence (e,f). The frames correspond to the following values of strain ε and

mean linear void size f̄1/3 (see the text related to Fig. 4 for the definition of f̄1/3): (a) ε = 1.72%, f̄1/3 = 0.089; (b) ε = 2.42%,

f̄1/3 = 0.094; (c) ε = 3.47%, f̄1/3 = 0.149; (d) ε = 3.89%, f̄1/3 = 0.195; (e) ε = 4.52%; (f) ε = 5.21%. After coalescence f̄ is
not measured.

on-the-fly, so that the system need not to be cooled to
zero-temperature and the atoms to be selected based on
potential energy, where quenching can influence the sys-
tem and prevent us seeing the real configuration. The
snapshot in Fig. 2 is when the voids have started to grow
by emitting dislocations, and thus the system has already
evolved somewhat through plastic flow. The broad plates
in the figure are stacking fault ribbons between leading
and trailing partial dislocations. The first generation of
dislocation loops have not yet totally formed and sepa-
rated from the voids in this snapshot, but are about to
do so, as can be seen as their first halves have already
separated from the void surface.

Figure 3 shows a series of visualizations of the crys-
tal defects within a slice of width 4.5 Å about a plane
including centers of both voids at six different instants
during coalescence. These snapshots are from the same
simulation as in Fig. 2, and the same criterion for show-
ing the atoms is used. Now only a slice is shown in order
to reveal the dislocation activity near the void surface
as the dislocation density increases. Figure 2 is a snap-

shot from a state of the system between panels Fig. 3(b)
and (c). From the snapshots it is apparent that the de-
formation mechanism involves the nucleation and propa-
gation of dislocations, accommodating the void growth,
and the interaction of the dislocations.46 For example,
the prismatic dislocation loops punched out by the voids
appear as roughly parallel line traces (due to the stack-
ing fault ribbons) in the slice Fig. 3(c), as verified in the
full 3D configuration, similarly as in Fig. 2. Initially the
dislocation activity around each void is essentially sym-
metric [Figs. 3(a) and (b)], as expected for independent
void growth, but as the plastic fields evolve the void-void
interaction is clearly evident both through interactions
between the two plastic zones and bias due to the elas-
tic fields [Fig. 3(c)]. Once the dislocation density grows
sufficiently high in the ligament region between the voids
[Fig. 3(d)], void B begins to grow in the direction away
from void A. Next the voids coalesce [Fig. 3(e)], and con-
tinue to grow as one until. Ultimately the void coalesces
with the its periodic images [subsequent to Fig. 3(f)] so
that the cavity percolates through the periodic system.
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FIG. 4: (a) Mean stress σm versus strain ε from the simula-
tions with the initial inter-void ligament distance ILD0=1.81
and the strain-rates ε̇ = 108/sec (dashed line) and 109/sec
(solid line). See the details of the simulations from the text

and the caption of Fig. 1. (b) Linear mean void size, f̄1/3,
(see the text for its definition) versus the strain from the same
simulations as the data in (a). The void sizes are calculated
until the coalescence of the voids. The inset shows the stress
from (a) versus linear mean void size from (b). Note the strain
scales are different.

The details of this final stage depend strongly on the pe-
riodic boundary conditions and will not be of interest
here.

The dislocation formation is closely related to the vol-
ume evolution of the voids. The voids grow by emit-
ting dislocation loops, driven by the reduction in the
elastic energy as the increase in void volume allows the
strained matrix material to relax. This relaxation can
be detected from the saturation of the increasing stress
in the system. All of these phenomena happen simul-
taneously, see Ref. 16. In Fig. 4(a) the mean (hy-
drostatic) stress σm is plotted with respect to strain ε
(the control parameter in these simulations) for strain-
rates ε̇ = 108/sec and 109/sec with ILD0=1.81. The

stress is calculated with the virial expression σm =
− 1

3V

(∑
i |~pi|2/mi +

∑
j>i ~rij · ~fij

)
, where for atoms i

and j the ~rij is the relative position, ~fij is the force,
~pi is the the momentum and mi is the mass (for a recent
discussion of atomistic stress calculations see Ref. 38).
Comparing Fig. 4(a) with Fig. 4(b) it is apparent that
the start of the accelerated void growth due to plastic-
ity is accompanied by, and indeed causes, the stress to
plateau (at the same strain value) as the elastic dilation
is relieved. The void growth is shown in Fig. 4(b) by
plotting linear void size f1/3, where the single void frac-
tion is f = Vvoid/V and V is the instantaneous volume of
the box at time t. The technique for calculating the void
volume Vvoid is described in Ref. 16. The void growth,
stress saturation and even the void coalescence take place
at significantly smaller strains for slower strain-rates,16
as can be seen from the figures, too. Therefore we con-
clude that a natural way to plot quantities from different
strain-rate simulations in the same figure is to plot them
versus linear void size, f1/3. Plotting versus f1/3 (a de-
rived quantity) is preferred to plotting versus the strain
because it reduces strain-rate effects. Thus by choosing
f1/3 from Fig. 4(b) as the reference quantity, the start
of the deviation from the elastic behavior can be syn-
chronized for the different strain-rates, see an example
for the mean stress from the inset of Fig. 4(b), where the
mean stress starts to saturate for both of the strain-rates
at f̄1/3 ' 0.09. In the two-void case we have chosen to
use the mean void fraction f̄ , which is calculated as the
average void fraction of the two voids. Throughout the
remainder of the Article we will typically use the linear
mean void size f̄1/3 as the reference quantity. The initial
linear mean void fraction at ambient pressure in these
simulations is f̄

1/3
0 ' (6.0 × 10−4)1/3 = 0.084. The ini-

tial mean void size f̄ = 6.0 × 10−4 is somewhat larger
than the value one gets from 4

3π(r0/L)3 = 5.2 × 10−4.
This potential source of confusion arises for two reasons:
first, atoms which have their centers within the radius r0

from the void center are removed for creating the void.
On the other hand, when the void volume is calculated
the surface of the void is defined based on the centers
of the remaining surface atoms. Second, the void sur-
face relaxes somewhat after the void is formed. For more
discussion of the void volume calculation, see Ref. 16.

IV. THE INFLUENCE OF THE NEIGHBORING
VOID

A. Distance Measurements of the Voids

Figure 3 offered several visual indications of the inter-
action between voids. Clearly, the separation between
the void surfaces (the ILD) serves as something akin to
a reaction coordinate for the coalescence: the voids coa-
lesce when it goes to zero. Other indications include the
displacement of the center of a void as it grows prefer-
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FIG. 5: Evolution of the ILD and the critical ILD. (a) Dynam-
ical ILD, the distance between the surfaces of the voids along
the line connecting the original center positions for various
initial ILD0 = 1.81, 1.50, 1.20, 1.00, plotted versus strain.
See the details of the simulation setup from the caption of
Fig. 1. For ILD0=1.81 the thick solid line and thick medium
dashed line denote ε̇ = 109/sec and 108/sec, respectively. The
thin solid lines show the hypothetical ILD for spherical voids
with the same ILD0 impinging freely on each other (see text).
The short dashed line shows the hypothetical ILD computed
by duplicating a single void (in the same box size as the two
void simulations) at fixed centers (here the duplication is to
the position with ILD0=1.81). (b) The same as in (a), but

now plotted versus the linear average void size, f̄1/3 and the
distances are given in the units of the current average diam-
eter d of the voids, calculated from their volumes assuming
that they are spherical (see text). The horizontal line is at
ILD=0.5 diameters, the value we identify as the ILDc. (Panel
(b) is after Ref. 27.)

entially toward the neighboring void and the change in
the void growth rate as the voids interact. In this sec-
tion we now quantify two of these effects, the evolution
of the ILD and the void center movement, in order to
analyze the coalescence. In Section IV B we study the
void shape evolution, and the void growth rate is studied

TABLE II: Critical strain εc and critical linear mean void size
f̄

1/3
c from Fig. 5, calculated as when the inter-void ligament

distance crosses the line ILD=0.5d: f̄
1/3
c = f̄1/3(ILD=0.5d),

εc = ε(ILD=0.5d).

ILD0 ε̇ (sec−1) f̄
1/3
c εc (%)

1.81 108 0.153 2.46
1.81 109 0.150 3.48
1.50 109 0.132 3.22
1.20 109 0.121 3.06
1.00 109 0.106 2.74

in Section V.
In Figs. 5(a) and (b) the dynamic evolution of the ILD

has been plotted for strain-rates ε̇ = 108/sec and 109/sec
and for various initial closest surface-to-surface distances
between the voids ILD0. (In Figs. 2-4 the data from the
case ILD0 ' 1.81 was shown.) The dynamic ILD has
been derived as the separation distance of the two sur-
face atoms from the two voids which are closest to the
line connecting the original centers of the voids. The raw
data of the ILD have been plotted in Fig. 5(a) and in
Fig. 5(b) scaled data are shown. For the horizontal axis
the linear mean void size f̄1/3 has been used in order
to collapse data from different strain-rates ε̇ = 108/sec
and 109/sec in the same figure. For the vertical axis the
inter-void ligament distance has been divided by the cur-
rent diameter of a void, d (note, that it is not the initial
value d0 = 2r0). The diameter d is calculated from their
volumes assuming that they are spherical (The formula
is given below). This scaling is motivated by the ansatz
that the void diameter sets the length scale for the sys-
tem, and hence the relevant distance between the voids
is not the pure distance, but its ratio with the diameters
of the voids. The void diameter affects both the elas-
tic and plastic fields around the void. Initially the void
separation distance decreases essentially smoothly until
plasticity begins, eventually reaching zero. A transition
occurs when the ILD starts to decrease much faster than
the free impingement line (the thin solid lines calculated
from two independent spherical voids) indicating void in-
teractions at the onset of coalescence. The thin solid lines
are derived by calculating from the same simulations the
average sizes of the two voids V̄void and deriving the di-
ameter as d = 2

(
3
4π V̄void

)1/3. Then the free impingement
curve is given by ILDfree = (ILD0 + d0)(1 + tε̇) − d.
The accelerated ILD decrease associated with transition
to coalescence takes place when the ILD reaches approxi-
mately one half: ILDc = 0.5±0.1 diameter or one radius,
independently of ILD0 or the strain-rate. Also note that
a curve derived from a single void growth is provided to
estimate the contribution of uncorrelated faceting effects
(the “one void” curve at ILD0=1.81), and these effects
are seen to be relatively small. The critical ILD of one
radius is much lower than the Brown-Embury estimate,
and it corresponds to a strain of 3.48% (f̄1/3 ' 0.15) for
ILD0=1.81 at ε̇ = 109/sec, close to frame (c) of Fig. 3.
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FIG. 6: Distance dcv from the original center of void to the
instantaneous void center, projected onto the line connecting
the original void centers, plotted versus the average void size
to the point of coalescence (ILD ' 0). The sign of the distance
dcv is positive for motion toward the other void. Solid and
long dashed lines are for voids A and B, respectively. Strain-
rates are ε̇ = 109/sec in (a) and ε̇ = 108/sec in (b). The thin
solid line is for a single void in the same size of the box and
with the same radius and strain-rate projected to the same
line. Here the distance dcv is given in the units of the original
void diameter d0. ILD0=1.81 in both (a) and (b). See the
details of the simulation setup from the caption of Fig. 1.

The values for critical strain and linear mean void size
when ILD=0.5d, derived from Fig. 5(b), are tabulated
for the simulated systems in Table II. In the very final
stages the ligament is drawn under biaxial stress, and the
flow switches from radial material transport to tangential
transport as the mechanism switches from loop punching
to drawing. This transition is visible in Figs. 5(a) and (b)
as slowing down of the reduction of ILD. At this point,
the material is highly defective but it remains ductile.
There is no abrupt fracture, as might be expected at
larger length scales. Here the final coalescence involves
an extended drawing and thinning of the ligament until
rupture.

Another measure of void interactions is whether the
voids grow preferentially toward their neighbor. This ef-
fect is quantified in Fig. 6, which shows the motion of
the center of mass of the void surface for the voids shown
in Fig. 3 (ILD0=1.81). We use here the center of mass
of the void surface as the definition for calculations of
the void center. The void surface has been derived by
Voronoi triangulation based on the center points of the
surface atoms (the same is done when the volume of the
void is calculated). See Ref. 16 for the details of the void
surface derivation. The distance

dcv =
[(

x′ − x0
cv

)2
+

(
y′ − y0

cv

)2
+

(
z′ − z0

cv

)2
]1/2

(1)

is calculated between the original center of mass of the
void surface [x0

cv, y0
cv, z0

cv] and the projection [x′, y′, z′] of
the current center of void [xcv, ycv, zcv], where the projec-
tion is onto the line connecting the original void centers.
The sign is positive if the void center has moved toward
the other void and negative in the opposite case.

Let us look first at the case with ε̇ = 109/sec, Fig. 6(a).
After the void growth starts, the center of void A initially
moves only slightly, but at about f̄1/3 = 0.15 (ILD =0.5d
in Fig. 5(b) and f̄

1/3
c in Table II), it starts to move in the

direction of the other void as the void growth becomes
biased toward its neighbor. Just before coalescence the
center of void A begins to move away from void B, as the
growth is biased in the opposite direction. During this
sequence, void B initially grows away from void A, then
roughly in unison with void A (f̄1/3 = f̄

1/3
c = 0.15) it be-

gins to grow toward its neighbor, and before coalescence
it too switches to growth away from the proximal void.
This retrograde growth happens at the same point (after
f̄1/3 = 0.19) as the decrease of the ILD begins to slow
down in Fig. 5(b) [see also the snapshot in Fig. 3(d)].
The same phenomenon–first slow movement or repulsion
from the void; then growth toward the nearby void at
about f̄1/3 = 0.15 (f̄1/3

c ); and finally retrograde growth–
holds in the ε̇ = 108/sec case, too, Fig. 6(b). However,
this retrograde growth phenomenon is less eminent in the
ε̇ = 108/sec case, as is the slowing down of the decrease
of the ILD in Fig. 5(b). As a reference the movement of
the center of a single void (in same box size) projected
to the same line is plotted for both of the strain-rates,
too. Comparing the single void case with the interacting
voids with the same strain-rates, one sees that the max-
imum distance the centers of the interacting voids have
moved is 2.5 to five times larger than the nanoscale ran-
dom walk of the single void center, except for the void B
in Fig. 6(b), so the movement of the void center is not
just due to statistical fluctuations at the void surface.

B. Shape Evolution of the Voids

The presence of a nearby void not only affects the po-
sition of the void but its shape, as well. The shape can be
quantified by calculating multipole moments of spherical
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(c) one void

FIG. 7: (a) Quadrupole moments (2) of the surface of void
A from the start of the simulation until coalescence. The
coordinate axes have been rotated using Eq. (3) so that the
z-axis is aligned with the center of void B. The initial inter-
void ligament distance for ILD0=1.00 and the strain-rate ε̇ =
109/sec. (b) Quadrupole moments for the void B, located at
[0.1778, 0.0829, 0.0387]L from void A. Now Eq. (3) has been
used so that the positive z-axis is toward the void A. See the
caption of Fig. 1 and the text for the rest of the details of
the simulation. (c) Quadrupole moments (not rotated) for a
single void in a simulation with same box size as in (a) and
(b) and the strain-rate ε̇ = 109/sec.

harmonics Qlm ≡ 1
r̄2

∫
Ylm(θ, φ) r2(θ, φ) dΩ, see Refs. 16

and 39. Under fully triaxial expansion the void tends to
an octahedral shape because of the index of the active
glide planes in FCC crystals, the anisotropic elastic con-
stants, and anisotropic surface energies. See also Ref. 40
for a study of void shapes in FCC crystals. On the other
hand, under uniaxial expansion the voids are of predomi-
nantly ellipsoidal shapes aligned along the preferred axis,
and they make a transition from a prolate to an oblate
shape.16 References 41–43 have also considered of oblate
void shapes under uniaxial loading through continuum
modeling. One may enquire whether the presence of a
nearby void causes evolution to an ellipsoidal shape, see
e.g. void A in Fig. 3(c). Ellipsoidal shapes can be quan-
tified with quadrupole moments:

Q20 = 1
4

√
5
π

1
r̄2

∫
3z2 − r2 dΩ,

Re Q21 = − 1
2

√
15
2π

1
r̄2

∫
xz dΩ,

Im Q21 = − 1
2

√
15
2π

1
r̄2

∫
yz dΩ,

Re Q22 = 1
4

√
15
2π

1
r̄2

∫
x2 − y2 dΩ,

Im Q22 = 1
2

√
15
2π

1
r̄2

∫
xy dΩ,

(2)

where r̄2 = 1
4π

∫
r2(θ, φ)dΩ is averaged over the surface

of the void. In calculating the quadrupole moments the
origin of the coordinates is taken to be the center of the
void. In Eq. (2) the quadrupole moments are calculated
with ẑ as the preferred axis, whereas the physically pre-
ferred axis is the line connected the void centers. Thus,
we transform the moments to the more natural coordi-
nates using D-matrices44:

Qlm(θ′, φ′) =
∑l

m′=−l D
l
m′m(α, β)Qlm′(θ, φ),

Dl
m′m(α, β) = e−im′αdl

m′m(β),
(3)

where the Euler angle α defines the rotation between co-
ordinates axes in (xy) plane (corresponding angle φ); and
the Euler angle β describes the rotation in z-axis (corre-
sponding angle θ). dl

mm′(β) can be found from tables.45
The quadrupole moments are plotted for the voids A and
B from the simulation with ILD0=1.00 in Figs. 7(a) and
(b), respectively. One sees from Fig. 7(a) that void A be-
comes markedly elliptical in the direction the other void,
as represented by Q20, when f̄1/3 ' f̄

1/3
c ' 0.106 (from

Table II). The quadrupole data from an identical simu-
lation but with only one void are plotted in Fig. 7(c) as
a control, and a smaller variation in the quadrupole mo-
ment is observed simply due to fluctuations in the atom-
istic growth. Other cases with larger ILD0 look about
the same as Figs. 7(a) and (b) although the trend and
especially the transition point may not be as clear. This
variation may be do to the elastic and plastic interactions
causing random shape evolution longer before the critical
ILDc (ILD=0.5d) is reached in cases when the voids are
initially separated further from each other (larger ILD0).
See Fig. 7(c) for the single void case as an example of
the random shape evolution. There f̄1/3 = 0.09 is when
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the dislocation driven void growth starts, see inset of
Fig. 4(b). Thus, in larger ILD0 cases the random shape
evolution suppresses the transition to the shape evolution
due to the other void.

V. VOID VOLUME EVOLUTION UNDER THE
INFLUENCE OF THE SECOND VOID

In Section IV we identified the onset of coalescence, but
it is also interesting to examine the void growth follow-
ing the onset of void interactions but prior to the actual
coalescence. How does this differ from the exponential
growth of an isolated void?12,16

A. A Pair of Voids

We first examine the volume evolution for the same
two-void simulations described above. Figure 8(a) shows
the void fraction, f = Vvoid/V , for the void A (also in the
case of a single void in the same box size) with respect
to the strain before coalescence. As can be seen from the
figure the void grows as exp(200ε), at least for the larger
ILD0’s and for the single void in the box. In Fig. 8(b)
we have factored out the asymptotic growth rate from f
in order to emphasize the differences between the curves
and plotted versus linear void size f1/3. The void growth
data for ILD0=4.62 and 1.81 coincide with the single void
curve. The void growth rate with smaller ILD0’s reach
their asymptotic growth rate earlier. In the figure we
have drawn as circles the void size values, where the dy-
namic ILD’s cross the line ILD=0.5d in Fig. 5(b). As
can be seen from figure, there is no significant change in
the void volume behavior when the voids start to inter-
act. Therefore we conclude that the void growth rate is
not affected by the interaction between the voids: thus
the interaction cannot be detected through the growth
rate. The key factor for the void growth rate is the rate
at which the dislocations separate from the void, and it
appears to remain unchanged in the vicinity of the sec-
ond void. However, the location at the void surface from
where the dislocation loops separate is affected by the in-
teraction with another void, as seen in Section IV in the
accelerated reduction of ILD, in the movement of void
center and in the shapes of the voids.

B. A Single Void Interacting with its Periodic
Images

We have also performed a series of simulations of a sin-
gle void with fixed initial radius size r0 in various initial
box sizes V0 = L3 in order to find the coalescence process
of the void with its (six) periodic image(s), similar to the
manner in which some continuum calculations of coales-
cence have been done (cf. Refs. 9 and 42). The details of
the different box sizes are reported in Table III. Figure 9
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FIG. 8: (a) Growth of the void A until coalescence presented
by void fraction f = Vvoid/V versus strain for ILD0=0.50,
1.00,1.20,1.50, 1.81, and 4.62 diameters as well as in a single
void case (in the same box size) at ε̇ = 109/sec. See the
details of the simulation setup from the caption of Fig. 1. The
asymptotic behavior (before finite size effects) is exponential
growth with exp(200ε) as seen from the line drawn as a guide
to the eye. (b) The void size f presented in (a) has been
scaled with the exponential and plotted versus linear void
size f1/3. The circles point where the dynamical ILD’s cross
the horizontal line ILD=0.5d in Fig. 5(b).

shows the data from this series of simulations. There we
have scaled the void fraction f = Vvoid/V with the expo-
nential, exp(200ε) (as in Fig. 8) as well as (r0/L)3 in order
to take into account different initial volumes V0 = L3 of
the box. Also (r0/L) scaling is applied to the linear void
f1/3 (horizontal axis). From the figure one concludes that
the behavior is opposite to the results from the case of an
isolated pair of voids, Section VA, in an important way.
The smaller the box size, and hence the smaller the ILD0,
the later the void starts to grow. This is easy to under-
stand since measured from afar the two separate voids
act as one big void, and thus grow faster than a smaller
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TABLE III: Sizes for simulated systems with various r0/L
(r0 = 2.17 nm is fixed) as the number of FCC cells, the equi-
librium side length of the cube L at ambient pressure and
room temperature, and the number of atoms in the box after
the void is formed. The shortest initial inter-void ligament
distance ILD0 of the void with its periodic image in the units
of the void diameter d is reported in the last column.

r0/L FCC cells L atoms ILD0

1/3 18× 18× 18 6.50 nm 23328 0.50
2/9 27× 27× 27 9.75 nm 78732 1.25
1/6 36× 36× 36 13.0 nm 186624 2.00
1/8 48× 48× 48 17.3 nm 442368 3.00
1/10 60× 60× 60 21.7 nm 860396 4.50
1/20 120× 120× 120 43.3 nm 6908379 9.00
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FIG. 9: Growth of a single void with varying initial box
size. The initial radius of the void is kept constant r0 =
2.17nm, while the initial side length of the cube is varied as
L =6.50nm, 9.75nm, 13.0nm, 17.3nm, 21.7nm, and 43.3nm.
The void fraction f has been divided by (r0/L)3 in order to
take into account different initial volumes V0 = L3 of the box.
The vertical axis has been divided also with the exponential
of the strain in order to show the asymptotic behavior as in
Fig. 8 for the largest box size. The strain-rate is for all the
simulations ε̇ = 109/sec.

void. In a single void with its periodic image that picture
does not hold. For example, there is no distance at which
the stress field approaches a single void stress field. The
periodic image only restricts the growth of the void. At a
more mechanistic level, the net effect of the array of voids
is to reduce the resolved shear stress driving dislocation
emission from the void surface, whereas a single nearby
void enhances this resolved shear stress on some regions
of the void surface. An intuitive way to understand this
phenomenon is to consider that the shear stress field of
a single void forces interstitial loops away from the void.
This field decreases with the distance from the void as

1/r3. At the near side of a neighboring void, this field
would tend to drive interstitial loops into that void; in
combination, it reduces that void’s own stress field. At
the far side, it adds to the other void’s field, but the effect
is smaller due to the greater distance. For a symmetric
array, the effect is to reduce the maximum resolved shear
stress across the surface and delay dislocation emission.

VI. CONCLUSIONS

To summarize, interaction and coalescence of two voids
in copper under tension have been simulated in multi-
million-atom MD simulations. The effects of interac-
tions between voids have been quantified by the increased
reduction-rate of their separation, by the movement of
their centers, and by their shape evolutions. The void
interaction has also been visualized by detecting the dis-
locations moving in the system using the generalized cen-
trosymmetry parameter. The critical inter-void ligament
distance has been found to be close to one void radius, in-
dependent of the strain-rate or the initial separation dis-
tance ILD0. The onset of coalescence occurs at the point
that the plastic zones surrounding the voids first inter-
act strongly. Signatures of coalescence have been found
in the dynamic ILD curves and the void center move-
ments, as explained in detail here, including reference to
the stress-strain and void volume curves. A weaker sig-
nature of the onset of coalescence has also been found
in the void shape curves giving the quadrupole moment
evolution. It has been demonstrated that the interaction
of the voids is not reflected in the volumetric asymptotic
growth rate of the voids. Finally, the coalescence process
of an isolated pair of voids has been shown to be markedly
different than the coalescence of a single void with its pe-
riodic images, so the latter would not provide a reliable
description of coalescence in typical low-symmetry con-
figurations.

In the future it would be interesting to study the cases
with uniaxial expansion (and the various orientations of
the voids with respect to the expansion direction), differ-
ent sizes of the voids relative to each other, other crystal
structures as body-center cubic and hexagonal lattices,
and systems including larger collections of voids.
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